De novo generation of an axially vascularized processed bovine cancellous-bone substitute in the sheep arteriovenous-loop model.
نویسندگان
چکیده
BACKGROUND/AIMS The aim of this study was to generate an axially vascularized bone substitute. The arteriovenous (AV)-loop approach in a large-animal model was applied in order to induce axial vascularization in a clinically approved processed bovine cancellous bone (PBCB) matrix of significant volume with primary mechanical stability and to assess the course of increasing axial vascularization. METHODS PBCB constructs were implanted into 13 merino sheep together with a microsurgically created AV loop in an isolation chamber. The vascularization process was monitored by sequential magnetic resonance imaging (MRI) scans. Explants were subjected to micro-computed tomography (micro-CT) analysis, histomorphometry and immunohistochemistry for CD31 and CD45. RESULTS Increasing axial vascularization in PBCB constructs was quantified by histomorphometry and visualized by micro-CT scans. Intravital sequential MRI scans demonstrated a significant progressive increase in perfused volume within the matrices. Immunohistochemistry confirmed endothelial lining of newly formed vessels. CONCLUSION This study demonstrates successful axial vascularization of a clinically approved, mechanically stable bone substitute with a significant volume by a microsurgical AV loop in a large-animal model. Thus microsurgical transplantation of a tissue-engineered, axially vascularized and mechanically stable bone substitute with clinically relevant dimensions may become clinically feasible in the future.
منابع مشابه
Autologous serum improves bone formation in a primary stable silica-embedded nanohydroxyapatite bone substitute in combination with mesenchymal stem cells and rhBMP-2 in the sheep model
New therapeutic strategies are required for critical size bone defects, because the gold standard of transplanting autologous bone from an unharmed area of the body often leads to several severe side effects and disadvantages for the patient. For years, tissue engineering approaches have been seeking a stable, axially vascularized transplantable bone replacement suitable for transplantation int...
متن کاملSuccessful human long-term application of in situ bone tissue engineering
Tissue Engineering (TE) and Regenerative Medicine (RM) have gained much popularity because of the tremendous prospects for the care of patients with tissue and organ defects. To overcome the common problem of donor-site morbidity of standard autologous bone grafts, we successfully combined tissue engineering techniques for the first time with the arteriovenous loop model to generate vascularize...
متن کاملAutogenous Osteochondral Transplantation Mosaicplasty (An Animal Study on Sheep)
Background: Autogenous osteochondral grafting of articular defect in weight-bearing surface of large joints has proven to be a proper biomechanical and physiological solution for localized full-thickness defects.Objective: To study the gross and histopathological results of mosaicplasty in an animal model (sheep’s medial femoral condyle), evaluating the factors of defect and graft size, assessi...
متن کاملبررسی هیستو مورفومتریک استخوان اسفنجی مهره دمی رت در طی آبستنی
Pregnancy make demands upon maternal calcium hemeostasis and the extent to which the maternal bone mass is effected remains uncertain. Recently changes in the bone mass during human pregnancy have been associated also with the transformation of the cancellous architecture and the bone surface available for exchange. These jistomorphometrical structural changes were...
متن کاملEvaluation of processed bovine cancellous bone matrix seeded with syngenic osteoblasts in a critical size calvarial defect rat model
INTRODUCTION Biologic bone substitutes may offer alternatives to bone grafting procedures. The aim of this study was to evaluate a preformed bone substitute based on processed bovine cancellous bone (PBCB) with or without osteogenic cells in a critical size calvarial defect rat model. METHODS Discs of PBCB (Tutobone) were seeded with second passage fibrin gel-immobilized syngenic osteoblasts ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European surgical research. Europaische chirurgische Forschung. Recherches chirurgicales europeennes
دوره 46 3 شماره
صفحات -
تاریخ انتشار 2011